NASA Atmospheric Effects of Aviation Project

Aerosol Instrument Inter-Comparison Workshop

Bruce Anderson NASA LaRC Lead Workshop Scientist

Phase I: Instrument comparisons using particle generators

Phase II: Instrument and inlet comparisons using the T-38 aircraft

Objectives:

- Investigate the causes of aerosol measurement disparities in the SUCCESS data set
- Investigate differences in aircraft aerosol emission factors determined by different research groups in similar test venues
- Establish standard sampling practices for measuring aircraft particle emissions in airborne and ground-based test venues

Participants: LaRC aerosol group (Anderson), NCAR aerosols (Twohy), NOAA/DU aerosol group (Brock), U. Missouri Rolla Aerosol and Cloud group (Hagen and Whitefield), U. Minnesota Particle Technology Laboratory (Pui), NASA GRC Pagems group

Approach:

- 1) Test aerosol instrument dynamic ranges and calibrations using particle generated by the U Minn particle generator and by diffusion burners
- 2) Test relative sampling probe collection efficiencies using the LaRC T-38 as the exhaust source.

Example of Differences Seen in Measurements: Air (LaRC) vs. Ground (UMR)

F100 Particulate Emissions

Aircraft PM are small, differences in instrument size sensitivity can lead to large differences in measured exhaust plume concentrations

Dynamic Range of Particle Counters

"Clean Room" CPCs often saturate when sampling high particle concentrations

Inlet Probes were tested in the lab for particle transmission efficiency and behind the LaRC T-38 for collection efficiency

Inlet Probes Positioned 1 m behind LaRC T-38 with J-85GE engines

Particles produced using UM particle generator Probe+D1luter+Tubing

Penetration Efficiency

UMR loses partly from poorly conducting tubing

Exhaust CO2

CO2 estimated from stated dilution ratios

T-38 Emissions Uncorrected TSI 3025

Differences in EIs behind 1-m probes > line loss differences

T-38 Emission Index at 1 Meter Using nASA Data 10^{17} afterburner Emission Index (#/kg) 10¹⁶ LaRC Probe 15 UMR Probe w/o H2O 10 UMR Probe w/H2O 14 10 40 100 60 80 Engine Power (%)

Water-cooling of UMR probe leads to thermophoretic losses

large losses of nanoparticles occur in UMR probe

<u>Summary</u>

- Particle counter efficiency varies with pressure, must be calibrated for anticipated sampling conditions.
- Particle counters have vastly different dynamic ranges; clean-room CPCs easily saturate when sampling combustion plumes
- Aircraft generate large numbers of nanoparticles, which can lead to large differences in measurements between CPC's with different lower size cuts
- Aircraft particle emissions are likely charged, may lead to significant transmission losses in sample tubes that are not sufficiently conductive
- Aircraft exhaust is >300 C at 1 meter, using water-cooled sampling probes can lead to large thermophoretic particle losses
- Aircraft exhaust velocities approach mach 1, sampling probes should be designed to expand flow and add diluent in less turbulent flow